Transient Physical Effects in Electron Beam Sintering

نویسنده

  • S. Lutzmann
چکیده

The extensive use of the electron beam in manufacturing processes like welding or perforating revealed the high potentials for also using it for solid freeform fabrication. First approaches like feeding wire into a melt pool have successfully shown the technical feasibility. Among other features, the electron beam exhibits high scanning speed, high power output, and beam density. While in laser-based machines the fabrication is working in a stable way, transient physical effects in the electron beam process can be observed, which still restrict process stability. For instance, a high power input of the electron beam can result in sudden scattering of the metal powder. The authors have developed an electron beam freeform fabrication system and examined the above mentioned effects. Thus, the paper provides methods in order to identify, isolate and avoid these effects, and to finally realize a reproducible process. Introduction Since the introduction of the first metal processing additive layer manufacturing machines in 1994, their development is proceeding with an enormous speed. Meanwhile, eight different companies are competing on the world market [1]. For all machines, the process implied is almost similar: A laser beam is used to solidify metal powder which is formed in layers. Most obvious distinctive features are the means of positioning the laser spot on the building plate, the composition of the powder material and the mechanical realization of forming a powder layer. At least one equipment manufacturer, the Swedish company ARCAM AB, has started the usage of an electron beam as an energy source for the solidification of the powder. The enormous potentials of this energy source [2] have been implied partially with a machine receivable on the market. Up to now, only a few independent scientific papers deal with the material related quality of the parts built on such a machine.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Determination of Process Parameters for Electron Beam Sintering (EBS)

Additive Layer Manufacturing (ALM) methods, like Electron Beam Sintering (EBS) constitute an interesting process concerning the production of small series and customised products. However, transient effects occur during processing due to the different physical principles of an electron beam (EB). Thus, process knowledge from similar ALM technologies, for instance Selective Laser Melting, can no...

متن کامل

An Investigation of Sintering Parameters on Titanium Powder for Electron Beam Melting Processing Optimization

Selective electron beam melting (SEBM) is a relatively new additive manufacturing technology for metallic materials. Specific to this technology is the sintering of the metal powder prior to the melting process. The sintering process has disadvantages for post-processing. The post-processing of parts produced by SEBM typically involves the removal of semi-sintered powder through the use of a po...

متن کامل

Physical characteristics of electron beam from conventional and beam shaper IOERT applicator: A comparison study

Introduction: Intraoperative electron radiation therapy (IOERT) is one of the cancer treatment techniques that delivers high doses to tumor bed during surgery. IOERT can be performed by either conventional LINACs or dedicated IORT accelerators such as LIAC (Light Intraoperative Accelerator). Two types of applicators can be used with LIAC dedicated accelerator including conventi...

متن کامل

Spark Plasma Sintering of Ultra-High Temperature Tantalum/Hafnium Carbides Composite

TaC and HfC are thought to have the highest melting point (~4000°C) among all refractory materials. The binary solid solution of TaC and HfC (Ta4HfC5) is also considered as the most refractory material with the melting point over 4000 °C and valuable physical and mechanical properties. The main goal of this work is to fabricate TaC/HfCbased composites which consolidated by means of spark plasma...

متن کامل

A spatially resolved study on the Sn diffusion during the sintering process in the active layer of dye sensitised solar cells.

Dye sensitised solar cells (DSSCs) use a mesoporous TiO(2) scaffold, typically assisted by an adsorbed dye, as the main active element, responsible for the photon absorption, exciton generation and charge separation functionality. The sintering process employed in the TiO(2) active layer fabrication plays a crucial role in the formation of the nanoparticle scaffold and hence the performance of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006